
.NET Framework, C# and a little bit

of WPF

Ivan Bernabucci

University Roma TRE

i.bernabucci@uniroma3.it

2

2

• What is .NET?
• What is FCL?
• What is CLR?
• What is C#?
• Basic Expressions and Operators
• Creating Project with Visual Studio
• Exploring WPF

OVERVIEW

.NET Framework, C# and a little bit

of WPF

3

.NET

Generic Software Framework

APPLICATION

Common Language Runtime
CLR

Framework Class Library
FCL

Like JAVA Virtual Machine MUST be installed

.NET Framework, C# and a little bit

of WPF

4

CLR

Execution Environment for Windows Applications

Responsible for: • Bring application to life
• Manage it while it is executing
• Tear down the application when it is finished or

has unrecoverable error

Services provided during application management:

Memory Management

Security

Operating system and hardware indipendence

Language Indipendence

.NET Framework, C# and a little bit

of WPF

5

Memory Management

The CLR actively track all the object running and requested by the application,

not like (original) C++. It will close everything and free memory cause it will

know when you have done with a particular resource

Security

In some cases the application has a very restricted sandbox and cannot

access file system areas. And ensures that the application does not read and

write memory that does not belongs to the application

Operating system and hardware indipendence

It’s a like a virtual machine cause it virtualize the execution environment,

abstracting the operating system, the number of processors

Language Indipendence

This means that there is a common runtime engine that all the .NET

languages share together, and that is possible to exploits components of other

languages (F#, Visual Basic, Delphi.Net, IronPython.NET, J#)

.NET Framework, C# and a little bit

of WPF

6

FLC

Library of functionalities to build applications

It contains thousands and thousands of CLASSES

Base Class Library inside the .NET Framework that handles
low-level operations such as:

 Database access
 File I/O
 Threading
 …

.NET Framework, C# and a little bit

of WPF

7

Designing and developing
Desktop Applications

Designing and developing
Web Applications

Designing and developing
Web Services

.NET Framework, C# and a little bit

of WPF

8

Like the Virtual Machine in Java, the .NET Frameworks compiler
provides an intermediate layer between the programming
language and the assembly code: Intermediate Language (like
the bytecode) which will be then used by the .NET framework in
run-time execution.

This IL is the managed code (it can be .dll or .exe).

.NET Framework, C# and a little bit

of WPF

9

An example of IL:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 Calc c = new Calc();
 Console.WriteLine("3 + 5 is {0}",c.Add(3,5));
 }
 }

 class Calc
 {
 public int Add(int x, int y)
 {
 return (x + y);
 }
 }
}

.NET Framework, C# and a little bit

of WPF

10

If we use the ildasm.exe and we open the Add method of the
calculator this is what we see -> non platform-specific instructions

.method public hidebysig instance int32 Add(int32 x,

 int32 y) cil managed

{

 // Code size 9 (0x9)

 .maxstack 2

 .locals init ([0] int32 CS$1$0000)

 IL_0000: nop

 IL_0001: ldarg.1

 IL_0002: ldarg.2

 IL_0003: add

 IL_0004: stloc.0

 IL_0005: br.s IL_0007

 IL_0007: ldloc.0

 IL_0008: ret

} // end of method Calc::Add

.NET Framework, C# and a little bit

of WPF

There are many .NET compilers for different languages like Smlltalk, Cobol, Pascal

.NET Framework, C# and a little bit

of WPF

http://www.dotnetpowered.com/languages.aspx

12

What is C#?

A standardized language to create .NET components

A. Standardized by ECMA
B. Create applications, services, reusable libraries
C. Syntax is similar to C++ and Java

A -> Microsoft took the semantic rules and the syntax and registered them in ECMA
international (an international standard organization)

.NET Framework, C# and a little bit

of WPF

13

.NET Framework, C# and a little bit

of WPF

14

General-purpose

Type-Safe

Object Oriented

Programming Language C#

C# has some features in his structure:

 Unified type system: all types derive from a base type
 There are different types: objects, interfaces, structures, enumerations

(like Java) and delegates!
 Function members: methods, events, properties

.NET Framework, C# and a little bit

of WPF

15

The C# command line compiler

• Transform C# code in Microsoft Intermediate Language (MSIL)
• Produces an assembly (*.dll, *.exe)

file *.cs
file *.cs
file *.cs csc.exe application.exe

.NET Framework, C# and a little bit

of WPF

16

C# derives, like Java, the main features of C++ simplifying several

aspects:

 No pointers required

 Automatic memory management through Garbage Collection

 Use of collections (List, Queue, …)

 Lambda expressions

.NET Framework, C# and a little bit

of WPF

17

Build Applications with Visual Studio 2010

Even if it’s possible to write in Notepad and compile with the prompt command
csc.exe

(ex: csc /target:exe Car.cs)

.NET Framework, C# and a little bit

of WPF

18

.NET Framework, C# and a little bit

of WPF

19

The IDE Visual Studio offer some advantages:

 Support for visual design
 Intellisense

Integrated Development Environment (IDE)

VISUAL STUDIO

• Edit C# (and other supporting) files
• Runs the C# compiler
• Debugging
• Testing

.NET Framework, C# and a little bit

of WPF

20

SOLUTION EXPLORER WINDOW

Contains at least one project

Projects organized under a solution

• Contains one or more source code files
• Each project produces an assembly

• Manages multiple applications or libraries

.NET Framework, C# and a little bit

of WPF

21

TYPES
C# is strongly typed

• One way to define objec is to write class
• Many types are built into .NET Framework
• You can define your own custom type

Code you want to execute must live inside a type
• Placing the code inside a method

C# has a unified type system -> all types ultimately share a common base type.
This means that all types, whether they represent business objects or are primitive
types such as numbers, share the same basic set of functionality.
For example, any type can be converted to a string by calling its ToString() method.

.NET Framework, C# and a little bit

of WPF

22

.NET Framework, C# and a little bit

of WPF

23

.NET Framework, C# and a little bit

of WPF

24

.NET Framework, C# and a little bit

of WPF

25

Primitive Types

Lowest level building blocks of programming

.NET Framework, C# and a little bit

of WPF

26

Namespaces

Namespaces organize types

• Avoid type name collision
• Can define namespace in one or more places

Fully qualified type names

• Include the assembly name
• Include the namespace
• Include the type name

Using directive

• Include the assembly name
• Include the namespace
• Include the type name

.NET Framework, C# and a little bit

of WPF

27

.NET Framework, C# and a little bit

of WPF

28

Name of the assembly containing the
namespace and the type

The namespace and the type

.NET Framework, C# and a little bit

of WPF

29

VARIABLES

Variables hold a value

• Variables always have type
• Should assign a value before you use a variable
• C# will be sure types are compatible during assignment

.NET Framework, C# and a little bit

of WPF

30

OPERATORS

Specify an operation to perform on one or more variables

• Mathematical operators (+ , - , * , /)
• Relational operators (< , > , <= , >=)
• Equality operators (== , =!)
• Conditional operators (&& , ||)
• Assignment operators (+= , -= , = , *=)

.NET Framework, C# and a little bit

of WPF

31

STATEMENTS AND EXPRESSIONS

A statement is an instruction

• A method is a series of statements
• Statements end with semicolons;
• Statements are executed in the order they appear

Expressions are statements that produce values

.NET Framework, C# and a little bit

of WPF

32

REFERENCES

Allow to use types in other assemblies

• Object browser is one way to examine assemblies we want to use
• Reference other assemblies in the FLC
• Reference 3° party assemblies
• Reference other assemblies in the solution

.NET Framework, C# and a little bit

of WPF

33

CLASSES AND OBJECTS

Classes define types

• State
• Behavior
• Access

Object are instances of a type

• You can create multiple instances
• Each instance holds a different state
• Each instance has some behavior

.NET Framework, C# and a little bit

of WPF

34

CONSTRUCTOR

When you write ‘new’ you call special methods
to create objects
• Set default values

Multiple constructors allowed
• Overloaded methods must take different

argument
• Factory Method

• Never returns a type
• Matches the name of the class

.NET Framework, C# and a little bit

of WPF

35

REFERENCE TYPES

Classes definition creates reference types

• Objects is stored in the «heap»
• Variables reference the object instance

Employee

Employee

Name = Mark

Employee

• Multiple variables can point to the same object
• Single variable can point to multiple objects during it’s

lifetime

.NET Framework, C# and a little bit

of WPF

36

.NET Framework, C# and a little bit

of WPF

37

VALUE TYPES

Variables hold values

• No pointers or references
• No object allocated on the heap : lightweight

.NET Framework, C# and a little bit

of WPF

Many built-in primitives are value types

• Int32, DateTime, Double

38

.NET Framework, C# and a little bit

of WPF

METHODS
Define behavior
Every method has a return type
Every method has zero or more parameters
Every method has a signature

39

.NET Framework, C# and a little bit

of WPF

FIELDS

Fields are variables of a class
• Static fields
• Instance fields

Readonly fields
• Can only assign values in the declaration or in the

constructor

40

.NET Framework, C# and a little bit

of WPF

PROPERTIES

Like fields but they don’t denote a storage location
• Every property defines a get and/or a set accessor
• Access level for set and get are indipendent
• With «prop» snippet a field is automatically created

It gives more control on the check of the internal fields

41

.NET Framework, C# and a little bit

of WPF

EVENTS

Allow a class to send notification to other classes or objects
• Publisher raises the event
• One or more subscribers process the event

42

Implementation of the object-oriented paradigm

Encapsulation

Inheritance

Polymorphism

The ability to define a class that has the same (inherits)
behavior and state of another class. For reuse code

The ability to hide inner details of inner working code in
the class. Reduces the complexity and secures some
special states.

Works together with inheritance. The ability to extends
the capabilities of a class with the implementation of
behaviors and state COMMON TO other classes

.NET Framework, C# and a little bit

of WPF

43

INHERITANCE

Create classes to extends other classes
• Classes inherits from System.Object by default
• Gain all the state and behavior of the base class

When not specified derives form System.Object

.NET Framework, C# and a little bit

of WPF

C#, WPF and the .NET Framework

44

C# Class:

Formally a class is composed by:

• Field data (the member variables)

• Members that operate on these data (constructor, properties, methods,

events)

class ECG
 {
 // Thes state of the object
 private string patientName;
 private int samplingFrequency;
 private List<double> dataSamples;

 public int MeanValue()
 {
 return (int)(dataSamples.Sum() / dataSamples.Count);
 }
 }

45

class Program
 {
 static void Main(string[] args)
 {
 ECG myECG = new ECG();

 myECG.patientName = "Mario Rossi";
 myECG.samplingFrequency = 1000;
 }
 }
class ECG
 {
 // The state of the object
 public string patientName;
 public int samplingFrequency;
 public List<double> dataSamples;
 // Methos of the object
 public int MeanValue()
 {
 return (int)(dataSamples.Sum() / dataSamples.Count);
 }
 }

C#, WPF and the .NET Framework

46

The Windows Presentation Foundation is a graphical display

system for Windows.

Windows left the GDI/GDI+ (used for more than 10 years) system

to embrace the DirectX libraries (best performance)

 WPF enables automatically video card optimization

 and when the video card is too old,..

 ..it automatically optimizes the software (DirectX functions)

C#, WPF and the .NET Framework

47

C#, WPF and the .NET Framework

48

C#, WPF and the .NET Framework

49

http://archive.msdn.microsoft.com/wpfsamples

WPF allows the design of stylish and high-performant application

(the programmer should work with a real designer!!):

 Web Layout Model (flexibility)

 Rich Drawing Model (transparent, shapes, graphical layers)

 Animation and timeline

 Support for Audio and Video (Windows Media Player)

 Styles and Template

C#, WPF and the .NET Framework

50

WPF is based on XAML (Extensible Application Markup Language -

2009)

Usually XAML is not written by hand but graphically design by

means of special tools (like Expression Blend or Visual Studio

design section)

The idea under the XAML is to separate completely the graphic

part from the coding part

C#, WPF and the .NET Framework

51

C#, WPF and the .NET Framework

52

C#, WPF and the .NET Framework

53

C#, WPF and the .NET Framework

54

The XAML code behind the default form:

<Window x:Class="TestApp.MainWindow“
 xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presenta
tion
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>

 </Grid>
</Window>

 The element in a XAML maps to instance of .NET classes. The name

of the element matches the name of the class (<Grid> is a Grid

Object)

 You can nest elements inside elements (same way an HTML page is

structured)

 Properties are set through attributes

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation

C#, WPF and the .NET Framework

55

Let’s modify:

<Window x:Class="TestApp.MainWindow“
 xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200"></ColumnDefinition>
 <ColumnDefinition Width="*"></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Grid.Background>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Red" />
 <GradientStop Offset="1.00" Color="Violet" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Grid.Background>

 </Grid>
</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation

C#, WPF and the .NET Framework

56

C#, WPF and the .NET Framework

57

Let’s modify:

<Window x:Class="TestApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 ….[]..
 </Grid.Background>
 <Button Grid.Column="0" Content="Button1" Height="23"
HorizontalAlignment="Left" Margin="5,20,0,0" Name="button1" VerticalAlignment="Top"
Width="75" />
 <Button Grid.Column="0" Content="Button2" Height="23"
HorizontalAlignment="Center" Margin="0,60,0,0" Name="button2" VerticalAlignment="Top"
Width="75" />
 <Button Grid.Column="0" Content="Button3" Height="23"
HorizontalAlignment="Right" Margin="0,100,0,0" Name="button3" VerticalAlignment="Top"
Width="75" />
 <Image Grid.Column="1" Height="163" HorizontalAlignment="Left"
Margin="38,31,0,0" Name="image1" Stretch="Fill" VerticalAlignment="Top" Width="308"
/>
 </Grid>
</Window>

C#, WPF and the .NET Framework

58

C#, WPF and the .NET Framework

59

Data binding is a relationship that tells WPF to extract some

information from a source object and use it to set a property in a

target object.

It’s perfect for design decoupled systems. The View and the Logic.

EMGU

60

First we talk about OpenCV!!

What is OpenCV?

OpenCV is an open source computer vision library

(http://SourceForge.net/projects/opencvlibrary). The library is written in C

and C++ and runs under Linux, Windows and Mac OS X. There is active

development on interfaces for Python, Ruby, Matlab, and other languages.

It is highly-optimized for image processing -> Focus on real time

applications

EMGU

61

Open CV contains over 500 functions that span many areas in vision,

including:

• Medical imaging

• Security

• User interface

• Camera calibration

• Stereo vision

• Robotics

A lot of applications have been released:

• Stitching images together in satellite and web maps

• Image scan alignment

• Medical image noise reduction

• Object analysis

• Security and intrusion detection systems

• Military applications

EMGU

62

OpenCV can be used in commercial product without problem and its community

counts more than 20.000 members..!!

Many time in Computer Vision there is the transformation of data from a still or

video camera into either a decision (turning a color image into a grayscale image)

or a new representation (“there are 5 tumor cells”, “the person isn’t part of the

group”)

While the brain has an

internal auto-color setting,

auto focus setting and

pattern recognition system…

..This is what we get form a

camera!!

EMGU

63

OpenCV is aimed at providing the basic tools needed to solve computer vision

problems.

In some cases, high-level functionalities in the library will be sufficient to solve

the more complex problems in computer vision. Even when this is not the case, the

basic components in the library are complete enough to enable creation of a

complete solution of your own to almost any computer vision problem.

EMGU

64

Basic types of OpenCV (they are all simple structures):

• CvPoint

• CvSize

• CvRect

The most important class in openCV is the IplImage!!

It derives from the class CvMatrix (everything in OpenCV is a matrix), and this is

the reason why it’s possible to operate with special matrix functions and operators

directly on these images!!

EMGU

65

EMGU

66

EMGU

67

EMGU

68

That was only a little part for Matrix operations… !!!

There are also special methids that can be apply directly on an image (Smooth

filtering, Canny, Hough transform, etc..)

http://www.seas.upenn.edu/~bensapp/opencvdocs/ref/opencvref_cv.htm

Here comes EMGU…

“Emgu CV is a cross platform .Net wrapper to the Intel OpenCV image

processing library and allows OpenCv functions to be called from .NET compatible

languages such as C#, VB, IronPython,..”

This means that it’s possible to use OpenCV methods and structure in the C#

simple style…

http://www.seas.upenn.edu/~bensapp/opencvdocs/ref/opencvref_cv.htm

69

Example: the IplImage is defined in EMGU as an Image and is

described (and instantiated since it’s a class) by its generic

parameters: color and depth

An image with 3 channels BGR each one defined by 1 byte:

Image<Bgr, byte> image=new Image<Bgr, byte>(new System.Drawing.Size(640, 480));

(The image will be managed by the garbage collector)

The main color types are supported :

Gray

Bgr

Bgra

Hsv (Hue Saturation Value)

Hls (Hue Lightness Saturation)

Lab (CIE L*a*b*)

EMGU

70

One of the most important method in EMGU is the CvInvoke,

which allows to call directly the OpenCv functions (some

OpenCV functions are wrapped in EMGU methods, but not all

of them)…

IntPtr image = CvInvoke.cvCreateImage(new System.Drawing.Size(200, 200),
Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);

CvInvoke.cvDilate(ImageIn, ImageOut, myDilateElem, 1);

BUT…. For a basic list of methods that you can apply directly

on the Image<ColorType, Depht> go:

http://www.emgu.com/wiki/files/2.3.0/document/Index.html

EMGU.CV.NameSpace -> Image (TColor, Tdepht) class -> Methods

http://www.emgu.com/wiki/files/2.3.0/document/Index.html

EMGU

71

EMGU

72

Let’s see an example!!

